المتوسطات المتحركة: ما هي من بين المؤشرات الفنية الأكثر شعبية، وتستخدم المتوسطات المتحركة لقياس اتجاه الاتجاه الحالي. كل نوع من المتوسط المتحرك (عادة مكتوبة في هذا البرنامج التعليمي كما ماجستير) هو نتيجة رياضية يتم حسابها عن طريق حساب متوسط عدد من نقاط البيانات الماضية. وبمجرد تحديدها، يتم رسم المتوسط الناتج بعد ذلك على رسم بياني للسماح للمتداولين بالنظر إلى البيانات الملساء بدلا من التركيز على تقلبات الأسعار اليومية المتأصلة في جميع الأسواق المالية. ويحسب أبسط شكل للمتوسط المتحرك، الذي يعرف على نحو ملائم بمتوسط متحرك بسيط، عن طريق الأخذ بالمتوسط الحسابي لمجموعة معينة من القيم. على سبيل المثال، لحساب متوسط متحرك أساسي لمدة 10 أيام، يمكنك إضافة أسعار الإغلاق خلال الأيام العشرة الماضية ثم تقسيم النتيجة بمقدار 10. في الشكل 1، يكون مجموع الأسعار خلال الأيام العشرة الماضية (110) هو مقسوما على عدد الأيام (10) للوصول إلى المتوسط لمدة 10 أيام. إذا أراد المتداول أن يرى المتوسط لمدة 50 يوما بدلا من ذلك، فسيتم إجراء نفس النوع من الحساب، ولكنه سيشمل الأسعار خلال ال 50 يوما الماضية. ويأخذ المتوسط الناتج أقل من (11) في الاعتبار نقاط البيانات العشرة الماضية من أجل إعطاء المتداولين فكرة عن كيفية تسعير أصل ما خلال الأيام العشرة الماضية. ربما كنت أتساءل لماذا التجار التقنيين استدعاء هذه الأداة المتوسط المتحرك وليس مجرد المتوسط العادي. الجواب هو أنه مع توفر قيم جديدة، يجب إسقاط أقدم نقاط البيانات من مجموعة ونقاط البيانات الجديدة يجب أن تأتي في لتحل محلها. وبالتالي، فإن مجموعة البيانات تتحرك باستمرار لحساب البيانات الجديدة عندما تصبح متاحة. وتضمن طريقة الحساب هذه أن المعلومات الحالية هي وحدها التي يجري حسابها. في الشكل 2، مرة واحدة يتم إضافة قيمة جديدة من 5 إلى مجموعة، مربع أحمر (تمثل نقاط البيانات 10 الماضية) يتحرك إلى اليمين ويتم إسقاط القيمة الأخيرة من 15 من الحساب. لأن قيمة صغيرة نسبيا من 5 يحل محل قيمة عالية من 15، هل تتوقع أن نرى متوسط انخفاض مجموعة البيانات، وهو ما يفعله، في هذه الحالة من 11 إلى 10. ماذا المتوسطات المتحركة تبدو مثل مرة واحدة قيم وقد تم حساب ما، يتم رسمها على الرسم البياني ثم متصلا لإنشاء خط متوسط متحرك. هذه الخطوط تقويس شائعة على الرسوم البيانية من التجار التقنيين، ولكن كيف يمكن استخدامها يمكن أن تختلف بشكل كبير (أكثر على هذا لاحقا). كما ترون في الشكل 3، فمن الممكن لإضافة أكثر من متوسط متحرك واحد إلى أي مخطط عن طريق ضبط عدد الفترات الزمنية المستخدمة في الحساب. قد تبدو خطوط التقويس هذه مشتتة أو مربكة في البداية، لكنك ستنمو عليها مع مرور الوقت. الخط الأحمر هو ببساطة متوسط السعر خلال ال 50 يوما الماضية، في حين أن الخط الأزرق هو متوسط السعر خلال ال 100 يوم الماضية. الآن بعد أن فهمت ما هو المتوسط المتحرك وما يبدو، أدخل أيضا نوع مختلف من المتوسط المتحرك ودراسة كيف يختلف عن المتوسط المتحرك البسيط المذكور سابقا. المتوسط المتحرك البسيط يحظى بشعبية كبيرة بين المتداولين، ولكن مثل كل المؤشرات الفنية، فإن لديه منتقديه. كثير من الأفراد يجادلون بأن فائدة سما محدودة لأن كل نقطة في سلسلة البيانات يتم ترجيحها، بغض النظر عن مكان حدوثها في التسلسل. ويرى النقاد أن أحدث البيانات أكثر أهمية من البيانات القديمة، وينبغي أن يكون لها تأثير أكبر على النتيجة النهائية. ردا على هذا النقد، بدأ التجار في إعطاء المزيد من الوزن للبيانات الحديثة، والتي أدت منذ ذلك الحين إلى اختراع أنواع مختلفة من المتوسطات الجديدة، والأكثر شعبية منها هو المتوسط المتحرك الأسي (إما). (لمزيد من القراءة، انظر أساسيات المتوسطات المتحركة المرجحة وما هو الفرق بين المتوسط المتحرك المتوسط المتحرك و سما) المتوسط المتحرك الأسي المتوسط المتحرك الأسي هو نوع من المتوسط المتحرك يعطي وزنا أكبر للأسعار الأخيرة في محاولة لجعله أكثر استجابة إلى معلومات جديدة. تعلم المعادلة المعقدة إلى حد ما لحساب إما قد تكون غير ضرورية لكثير من التجار، لأن ما يقرب من جميع حزم الرسوم البيانية تفعل الحسابات بالنسبة لك. ومع ذلك، بالنسبة لك المهوسون الرياضيات هناك، وهنا هو المعادلة إما: عند استخدام الصيغة لحساب النقطة الأولى من إما، قد تلاحظ أنه لا توجد قيمة متاحة للاستخدام كما إما السابق. ويمكن حل هذه المشكلة الصغيرة من خلال بدء الحساب مع متوسط متحرك بسيط والاستمرار في مع الصيغة أعلاه من هناك. لقد قدمنا لك نموذج جدول يتضمن أمثلة واقعية عن كيفية حساب متوسط متحرك بسيط ومتوسط متحرك أسي. الفرق بين إما و سما الآن بعد أن لديك فهم أفضل لكيفية حساب سما و إما، دعونا نلقي نظرة على كيفية تختلف هذه المتوسطات. من خلال النظر في حساب إما، ستلاحظ أن المزيد من التركيز على نقاط البيانات الأخيرة، مما يجعلها نوع من المتوسط المرجح. في الشكل 5، فإن أعداد الفترات الزمنية المستخدمة في كل متوسط متطابقة (15)، لكن الاستجابة الفورية تستجيب بسرعة أكبر للأسعار المتغيرة. لاحظ كيف أن إما له قيمة أعلى عندما يكون السعر في ارتفاع، وينخفض أسرع من سما عندما يكون السعر في الانخفاض. هذه الاستجابة هي السبب الرئيسي في تفضيل العديد من التجار استخدام إما عبر سما. ما هي الأيام المختلفة التي تعني المتوسطات المتحركة هي مؤشر قابل للتخصيص تماما، مما يعني أنه يمكن للمستخدم اختيار أي إطار زمني يريدونه بحرية عند إنشاء المتوسط. وأكثر الفترات الزمنية شيوعا في المتوسطات المتحركة هي 15 و 20 و 30 و 50 و 100 و 200 يوم. وكلما قلت المدة الزمنية المستخدمة لإنشاء المتوسط، كلما زادت حساسية التغييرات في الأسعار. وكلما زادت المدة الزمنية، كلما كانت المدة أقل حساسية، أو أكثر سلاسة، سيكون المتوسط. ليس هناك إطار زمني مناسب لاستخدامه عند إعداد المتوسطات المتحركة. أفضل طريقة لمعرفة أي واحد يعمل بشكل أفضل بالنسبة لك هو تجربة مع عدد من فترات زمنية مختلفة حتى تجد واحد الذي يناسب الاستراتيجية الخاصة بك. المتوسطات المتحركة: كيفية استخدام تنفيذ ثيمسبريادشيت من التعديل الموسمي والتجانس الأسي فمن مباشرة لإجراء تعديل موسمي وتناسب نماذج التمهيد الأسي باستخدام إكسيل. يتم أخذ صور الشاشة والرسوم البيانية أدناه من جدول بيانات تم إعداده لتوضيح التعديل الموسمي الموسمي والتجانس الأسي الخطي على بيانات المبيعات الفصلية التالية من أوتبوارد مارين: للحصول على نسخة من ملف جدول البيانات نفسه، انقر هنا. نسخة من التجانس الأسي الخطي التي سيتم استخدامها هنا لأغراض مظاهرة هو Brown8217s الإصدار، لمجرد أنه يمكن تنفيذها مع عمود واحد من الصيغ وهناك واحد فقط ثابت تمهيد لتحسين. عادة فمن الأفضل استخدام الإصدار Holt8217s التي لديها ثوابت تمهيد منفصلة للمستوى والاتجاه. وتنتقل عملية التنبؤ على النحو التالي: '1' أولا تعدل البيانات موسميا '2'، ثم تنشأ التنبؤات للبيانات المعدلة موسميا عن طريق التمهيد الأسي الخطي؛ '3' وأخيرا، فإن التنبؤات المعدلة موسميا هي عبارة عن تنبؤات متوقعة موسميا للحصول على تنبؤات للمسلسل الأصلي . يتم إجراء عملية التعديل الموسمية في الأعمدة من D إلى G. الخطوة الأولى في التعديل الموسمية هي حساب المتوسط المتحرك المركزة (يتم القيام به هنا في العمود D). ويمكن القيام بذلك عن طريق الأخذ بمتوسط متوسطين على مدى سنة واحدة تقابلهما فترة واحدة بالنسبة لبعضهما البعض. (وهناك حاجة إلى مزيج من متوسطين للمقاصة بدلا من متوسط واحد للأغراض المركزية عندما يكون عدد المواسم). والخطوة التالية هي حساب النسبة إلى المتوسط المتحرك - أي. البيانات الأصلية مقسومة على المتوسط المتحرك في كل فترة - والتي يتم تنفيذها هنا في العمود هاء (ويسمى هذا أيضا مكون كوتريند-سيكليكوت للنمط، بقدر ما يمكن اعتبار التأثيرات ودورات الأعمال على أنها كلها لا يزال بعد متوسطه على مدى سنوات كاملة من البيانات، وبطبيعة الحال، من شهر إلى آخر التغييرات التي لا تعود إلى الموسمية يمكن تحديدها من قبل العديد من العوامل الأخرى، ولكن متوسط 12 شهرا ينعم عليهم إلى حد كبير.) ذي يتم حساب المؤشر الموسمية المقدر لكل موسم من خلال متوسط متوسط جميع النسب لهذا الموسم المحدد، والذي يتم في الخلايا G3-G6 باستخدام صيغة أفيراجيف. ثم يتم تعديل النسب المتوسطة بحيث تصل إلى 100 مرة بالضبط عدد الفترات في الموسم، أو 400 في هذه الحالة، والذي يتم في الخلايا H3-H6. أسفل العمود F، يتم استخدام صيغ فلوكوب لإدراج قيمة الفهرس الموسمية المناسبة في كل صف من جداول البيانات، وفقا لربع السنة الذي يمثله. وينتهي المتوسط المتحرك المركب والبيانات المعدلة موسميا على النحو التالي: لاحظ أن المتوسط المتحرك يشبه عادة نسخة أكثر سلاسة من السلسلة المعدلة موسميا، وهو أقصر على كلا الطرفين. وتظهر ورقة عمل أخرى في نفس ملف إكسيل تطبيق نموذج تمهيد الأسي الخطي على البيانات المعدلة موسميا، بدءا من العمود G. وتدخل قيمة ثابت التمهيد (ألفا) فوق عمود التنبؤ (هنا في الخلية H9) و من أجل الراحة يتم تعيين اسم النطاق كوتAlpha. quot (يتم تعيين الاسم باستخدام الأمر كوتينسنامكراتيكوت). يتم تهيئة نموذج ليس عن طريق تعيين أول اثنين من التوقعات مساوية للقيمة الفعلية الأولى للسلسلة المعدلة موسميا. الصيغة المستخدمة هنا لتوقعات ليس هي النموذج المعادلة وحيد المعادلة من طراز Brown8217s: يتم إدخال هذه الصيغة في الخلية المقابلة للفترة الثالثة (هنا، الخلية H15) ونسخها من هناك. لاحظ أن توقعات ليس للفترة الحالية تشير إلى الملاحظات السابقة واثنين من أخطاء التنبؤ السابقة، فضلا عن قيمة ألفا. وهكذا، فإن صيغة التنبؤ الواردة في الصف 15 تشير فقط إلى البيانات التي كانت متاحة في الصف 14 وما قبله. (بطبيعة الحال، إذا أردنا استخدام تمهيد أسي بسيط بدلا من خطي أسي، يمكننا استبدال صيغة سيس هنا بدلا من ذلك، ويمكننا أيضا استخدام هولت 8217s بدلا من طراز براون 8217s ليس، والذي سيتطلب عمودين إضافيين من الصيغ لحساب المستوى والاتجاه التي تستخدم في التنبؤ.) وتحسب الأخطاء في العمود التالي (هنا، العمود J) بطرح التوقعات من القيم الفعلية. ويحسب خطأ متوسط الجذر التربيعي باعتباره الجذر التربيعي للتباين في الأخطاء بالإضافة إلى مربع الوسط. (ويأتي ذلك من الهوية الرياضية: مس فاريانس (أخطاء) (أفيراج (أخطاء))). في حساب متوسط وتفاوت الأخطاء في هذه الصيغة، يتم استبعاد الفترتين الأوليين لأن النموذج لا يبدأ فعلا التنبؤ حتى الفترة الثالثة (الصف 15 في جدول البيانات). يمكن العثور على القيمة المثلى ألفا إما عن طريق تغيير ألفا يدويا حتى يتم العثور على الحد الأدنى رمز، وإلا يمكنك استخدام كوتسولفيركوت لإجراء التقليل الدقيق. قيمة ألفا التي وجدت سولفر وجدت هنا (alpha0.471). وعادة ما تكون فكرة جيدة هي رسم أخطاء النموذج (في الوحدات المحولة)، وكذلك حساب ورسم مؤثراتهم الذاتية عند فترات تأخر تصل إلى موسم واحد. هنا هو مؤامرة سلسلة زمنية من الأخطاء (المعدلة موسميا): يتم حساب أوتوكوريلاتيونس خطأ باستخدام الدالة كوريل () لحساب الارتباطات من الأخطاء مع أنفسهم تأخرت بفترة واحدة أو أكثر - يتم عرض التفاصيل في نموذج جدول البيانات . هنا هو مؤامرة من أوتوكوريلاتيونس من الأخطاء في الفترات الخمسة الأولى: و أوتوكوريلاتيونس في الفترات من 1 إلى 3 قريبة جدا من الصفر، ولكن ارتفاع في تأخر 4 (الذي هو 0.35) هو مزعجة قليلا - فإنه يشير إلى أن عملية التعديل الموسمية لم تكن ناجحة تماما. ومع ذلك، فإنه في الواقع هامشية فقط. 95 لفحص ما إذا كانت أوتوكوريلاتيونس تختلف اختلافا كبيرا عن الصفر تقريبا زائدا أو ناقص 2SQRT (n-k)، حيث n هو حجم العينة و k هو الفارق الزمني. هنا n هو 38 و k يختلف من 1 إلى 5، وبالتالي فإن مربع الجذر من-ن-ناقص-ك حوالي 6 لجميع منهم، وبالتالي حدود لاختبار الأهمية الإحصائية للانحرافات من الصفر هي تقريبا زائد - أو ناقص 26، أو 0.33. إذا قمت بتغيير قيمة ألفا باليد في هذا النموذج إكسيل، يمكنك مراقبة تأثير على سلسلة زمنية ومؤامرات الارتباط الذاتي من الأخطاء، وكذلك على الخطأ الجذر متوسط التربيع، والتي سيتم توضيحها أدناه. في الجزء السفلي من جدول البيانات، يتم إعداد صيغة التنبؤات في المستقبل عن طريق استبدال التنبؤات بالقيم الفعلية فقط عند النقطة التي يتم فيها نفاد البيانات الفعلية. حيث تبدأ كوتوركوتلكوت. (وبعبارة أخرى، في كل خلية حيث تحدث قيمة بيانات مستقبلية، يتم إدراج مرجع الخلية الذي يشير إلى التوقعات التي تم إجراؤها لتلك الفترة.) يتم نسخ جميع الصيغ الأخرى ببساطة من أسفل: لاحظ أن الأخطاء للتنبؤات من يتم حساب كل المستقبل ليكون صفر. وهذا لا يعني أن الأخطاء الفعلية ستكون صفرا، بل إنها تعكس مجرد حقيقة أنه لأغراض التنبؤ، نفترض أن البيانات المستقبلية ستساوي التوقعات في المتوسط. وتظهر توقعات ليس على البيانات المعدلة موسميا على النحو التالي: مع هذه القيمة الخاصة ألفا، وهو الأمثل للتنبؤات قبل فترة واحدة، فإن الاتجاه المتوقع هو أعلى قليلا، مما يعكس الاتجاه المحلي الذي لوحظ على مدى العامين الماضيين أو هكذا. وبالنسبة لقيم ألفا الأخرى، يمكن الحصول على إسقاط اتجاه مختلف جدا. وعادة ما تكون فكرة جيدة لمعرفة ما يحدث لإسقاط الاتجاه على المدى الطويل عندما يكون ألفا متنوعا، لأن القيمة الأفضل للتنبؤ على المدى القصير لن تكون بالضرورة أفضل قيمة للتنبؤ بالمستقبل البعيد. على سبيل المثال، هنا هي النتيجة التي يتم الحصول عليها إذا تم تعيين قيمة ألفا يدويا إلى 0.25: الاتجاه المتوقع على المدى الطويل هو الآن سلبي بدلا من إيجابي مع قيمة أصغر من ألفا، نموذج يضع المزيد من الوزن على البيانات القديمة في وتقديراته للمستوى الحالي واتجاهه الحالي، وتنبؤاته الطويلة الأجل تعكس الاتجاه التنازلي الذي لوحظ خلال السنوات الخمس الماضية بدلا من الاتجاه التصاعدي الأحدث. ويوضح هذا المخطط أيضا بوضوح كيف أن النموذج مع قيمة أصغر من ألفا أبطأ للرد على نقاط كوتورنينغكوت في البيانات وبالتالي يميل إلى جعل خطأ من نفس علامة لعدة فترات متتالية. وأخطاء التنبؤ المتوقعة من خطوة واحدة أكبر في المتوسط من تلك التي تم الحصول عليها من قبل (رمز 34.4 بدلا من 27.4) وترتبط ارتباطا إيجابيا قويا. ويتجاوز الترابط الذاتي المتخلف 1،56 قيمة 0،33 المحسوبة أعلاه لانحراف ذي دلالة إحصائية عن الصفر. وكبديل لتخفيض قيمة ألفا من أجل إدخال مزيد من التحفظ في التنبؤات طويلة الأجل، يضاف أحيانا عامل التخميد المعتدل إلى النموذج من أجل جعل الاتجاه المتوقع يتسطح بعد بضع فترات. وتتمثل الخطوة الأخيرة في بناء نموذج التنبؤات في التنبؤ بالتنبؤات المتوقعة من خلال ضربها بالمؤشرات الموسمية المناسبة. ومن ثم فإن التنبؤات المعاد تشكيلها في العمود الأول هي ببساطة نتاج المؤشرات الموسمية في العمود F وتوقعات ليس الموضوعة موسميا في العمود ح. ومن السهل نسبيا حساب فترات الثقة للتنبؤات من خطوة واحدة إلى الأمام التي يقدمها هذا النموذج: أولا حساب رمز (الجذر متوسط مربع الخطأ، الذي هو مجرد الجذر التربيعي للمشاريع الصغيرة والمتوسطة) ومن ثم حساب فترة الثقة للتوقعات المعدلة موسميا عن طريق جمع وطرح مرتين من رمز. (عموما فاصل الثقة 95 للتنبؤ بفترة زمنية واحدة يساوي تقريبا نقطة التنبؤ زائد أو ناقص ضعف الانحراف المعياري المقدر لأخطاء التنبؤ، على افتراض أن توزيع الخطأ طبيعي تقريبا وحجم العينة هي كبيرة بما فيه الكفاية، ويقول 20 أو أكثر. هنا، رمزز بدلا من العينة الانحراف المعياري للأخطاء هو أفضل تقدير للانحراف المعياري للأخطاء التوقعات المستقبلية لأنه يأخذ التحيز وكذلك عشوائية الاختلافات في الاعتبار.) حدود الثقة من أجل التنبؤ المعدل موسميا ثم ريساوناليزد. إلى جانب التوقعات، بضربها بالمؤشرات الموسمية المناسبة. وفي هذه الحالة، يساوي الرمز رمز 27.4 والتوقعات المعدلة موسميا للفترة المقبلة الأولى (ديسمبر 93) هي 273.2. بحيث تكون فترة الثقة 95 المعدلة موسميا من 273.2-227.4 218.4 إلى 273.2227.4 328.0. مضاعفة هذه الحدود من قبل ديسمرس مؤشر موسمية من 68.61. نحصل على حدود أدنى وأعلى من الثقة 149.8 و 225.0 حول توقعات ديسمبر 93 نقطة من 187.4. ومن المتوقع أن تتسع حدود الثقة للتنبؤات بأكثر من فترة واحدة مع تزايد الأفق المتوقع بسبب عدم اليقين بشأن المستوى والاتجاه فضلا عن العوامل الموسمية، ولكن من الصعب حسابها عموما بطرائق تحليلية. (الطريقة المناسبة لحساب حدود الثقة لتوقعات ليس هي باستخدام نظرية أريما، ولكن عدم اليقين في المؤشرات الموسمية هو مسألة أخرى). إذا كنت ترغب في فترة ثقة واقعية للتنبؤ أكثر من فترة واحدة المقبلة، واتخاذ جميع مصادر في الاعتبار، أفضل رهان هو استخدام طرق تجريبية: على سبيل المثال، للحصول على فترة ثقة لتوقعات من خطوتين إلى الأمام، يمكنك إنشاء عمود آخر في جدول البيانات لحساب توقعات خطوة بخطوة لكل فترة ( من خلال بوتسترابينغ توقعات خطوة واحدة إلى الأمام). ثم حساب رمز من أخطاء التنبؤ من خطوتين إلى الأمام واستخدام هذا كأساس لفاصل الثقة 2-خطوة قدما. عندما حساب متوسط متحرك تشغيل، ووضع المتوسط في الفترة الزمنية الوسطى منطقي في المثال السابق قمنا بحساب متوسط الفترات الزمنية الثلاث الأولى ووضعها بجوار الفترة 3. كنا قد وضعت المتوسط في منتصف الفاصل الزمني من ثلاث فترات، وهذا هو، بجانب الفترة 2. وهذا يعمل بشكل جيد مع فترات زمنية فردية ، ولكن ليست جيدة جدا لفترات زمنية حتى. إذا أين نضع المتوسط المتحرك الأول عند M4 من الناحية الفنية، فإن المتوسط المتحرك سينخفض عند t 2.5، 3.5. لتجنب هذه المشكلة نحن على نحو سلس على ماس باستخدام M 2. وهكذا نحن على نحو سلس القيم أملس إذا كنا متوسط عدد من المصطلحات، ونحن بحاجة إلى تسهيل السلس القيم ويبين الجدول التالي النتائج باستخدام M 4.
No comments:
Post a Comment